

Exploiting Sentinel 3 Data for Estimating GPP Across Europe Using the Quantum Yield (QY) Model: An Approach from the Sen4GPP Project

Booker Ogutu, Jadu Dash, Harry Morris, Subhajit Bandopadhyay University of Southampton, UK

Sen4GPP Project

- Accurate estimation of gross primary productivity (GPP) is <u>important in understanding the</u> <u>global carbon cycle and its response to environmental change</u>
- □ The <u>Sen4GPP Project</u> aims to exploit the complementary information provided by the Sentinel missions (*Sentinel-2, Sentinel-3 and Sentinel-5P*), and other *EO* and *in-situ* data to improve quantification of terrestrial ecosystems GPP at multiple spatial and temporal resolutions

<u>Light Use Efficiency (LUE) Approach – The Quantum Yield Model</u> (*Based on the SCARF Model; Ogutu et al, 2013*)

$\Box QY_GPP = PAR * FAPAR_{chl} * [PC_3\alpha_3fD_3\Psi_e + (1-PC_3)\alpha_4fD_4]$

- □ **FAPAR**_{chl} : Fraction of photosynthetic active radiation absorbed by green/chlorophyll in the canopy derived from inversion of flux data and up-scaled using S2/3 Chlorophyll Index (S2/OTCI)
- \Box PC_3 : Percentage of C_3 plants, $\mathbf{1}\text{-PC}_3$ represents the percentage of C_4 plants in a pixel
- $\Box \alpha_3$ and α_4 : Quantum yields for C_3 and C_4 plants respectively,
- $\Box \Psi_e$: Influence of temperature and leaf CO_2 concentration on the maximum quantum yield of C₃ plants
- \Box fD_3 and fD_4 : Influence of Vapour Pressure Deficit on C₃ and C₄ photosynthesis respectively

Deriving FAPAR_{chl} from Inversion of Flux Tower data(Chiwara et al., 2018; Ogutu and Dash, 2013, Hanan et al., 2002)

□ From Previous Equation:

 $FAPAR_{chl} = \frac{1}{\left[PC_{3}\alpha_{3}f_{D3}\Psi_{e} + (1 - PC_{3})\alpha_{4}f_{D4}\right]}$

Where:

 \mathcal{E} = Slope of *in-situ* GPP vs PAR(from flux tower data) (ecosystem LUE)

- \Box f_D = Influence of VPD on photosynthesis
- \square α_3 and α_4 = Quantum yield terms for C₃ and C₄ respectively
- \Box Ψ_{e} = Influence of Temperature and Leaf CO₂ concentration on photosynthesis in C₃ plants

<u>FAPAR</u>_{chl} derived at **30% of sites**

To up-scale - Related to **S3-OLCI Terrestrial Chlorophyll Index-OTCI** at these sites to generate PFT specific and 'Global' Equation

Tests to optimise the relationship(varying max PAR value, varying quantum yield terms, compositing window, pixel size/grid etc.)

<u>Relationship between FAPAR_{chl} and S3- OTCI ('Global')</u>

Implementation and validation of the QY Model

FAPAR_{chl} = 0.834OTCI + 0.053 (Global relationship-from Previous Slide)

Sample of Site Level Comparisons (QY Model output vs. Flux Tower GPP)

Sample of Site Level Comparisons (QY Model output vs. Flux Tower GPP)

PFT Level Comparisons (QY Model output vs. Flux Tower GPP)

All Sites Comparison (QY Model output vs. Flux Tower GPP)

70% validation sites

Conclusion and Future Sen4GPP work at UoS

- Overall, using Sentinel data in the QY-model results in good performance in various PFTs
- **Expand model testing to AmeriFlux/other sites**
- Sensitivity of QY model to model input variables, uncertainty characterisation, source of negative bias
- □ Implementation of the QY-model using S-2 data-heterogeneity
- Compare the QY-modelled GPP product with existing GPP products (MOD17 GPP, Terra-P GPP, Dry Matter Productivity products).
- Generation of Experimental Data and scientific application

Thank you

Extra Slides

<u>Challenges</u>

- □ Availability of C3/C4 maps
- □ *In-situ* data scarcity in the tropics (for model training and validation)
- Analysis Ready Data (e.g. Sentinel-3 surface reflectance, gridding of S-3 data)
- □ Reliance on meteorological data (at coarse spatial resolution)

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.0

0.2

0.4

Normalized OTCI

0.6

0.8

1.0

TCHL

0.0

 $R^2 = 0.85$

n=95

0.2

y = 1.6368x - 0.13824

0.4

Normalized OTCI

CZ-Stn: ppfd_filtered_500_GPP_DT_VUT_REF_0.08

0.6

0.8

1.0

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

Normalized OTCI

fCHL

0.0

 $1.0 \ R^2 = 0.85$

n=95

0.2

v = 1.16513x-0.09855

0.4

Normalized OTCI

CZ-Stn: ppfd filtered 1000 GPP DT VUT REF 0.08

0.6

0.8

1.0

0.2

0.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

Normalized OTCI

fCHL

0.0

 $1.0 \ R^2 = 0.82$

n=95

0.2

y = 0.85232x - 0.058

0.4

Normalized OTCI

CZ-Stn: ppfd_GPP_DT_VUT_REF_0.08

0.6

0.6

0.8

0.8

1.0

0.8

1.0

0.6

Quantum Yield Value

Mean vs maximum FAPAR_{chl} for 8 day window

1500m x 1500m or 500m x 500m OTCI

1 x 1

8 day vs daily extractions of OTCI

3 x 3 OTCl or OGVI

