

4th Carbon from Space Workshop

Matthias Forkel¹, Niels Andela^{2,4}, Vincent Huijnen³, Jos de Laat³, Alfred Awotwi², Daniel Kinalczyk¹, Johanna Kranz¹, Christopher Marrs¹, Luisa Schmidt¹, and Christine Wessollek¹

Quantifying Fuels, Fire Behaviour and Fire Emissions by Integrating Observations from Sentinel-1, -2, -3, -5p ++

1 TU Dresden, 2 Cardiff University, 3 KNMI, 4 BeZero Carbon

━ ━ ■ ■ ₩ ₩ ━ = ₩ ₩ ±= ━ ₩ ₩ = ₩ = ₩ ₩ ±= ₩ = = ₩ ₩

Global fire emissions

Atmos. Chem. Phys., 20, 969-994, 2020 https://doi.org/10.5194/acp-20-969-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Atmospheric Chemistry and Physics

60° E

120° E

180° E

Satellite observations for fire emissions

Fuels loads

- Leaf area index (e.g. Proba-V, Sentinel-3)
- Land cover (change) (e.g. ESA CCI)
- Biomass (e.g. ESA CCI)
- Forest height (e.g. GEDI)
- Vegetation Optical Depth (e.g. SMOS, VODCA)

Fuel moisture

Fire dynamics

Atmospheric composition

Satellite observations for fire emissions

Fuels loads

- Leaf area index (e.g. Proba-V, Sentinel-3) •
- Land cover (change) (e.g. ESA CCI)
- Biomass (e.g. ESA CCI)
- Forest height (e.g. GEDI)
- Vegetation Optical Depth (e.g. SMOS, VODCA)

Sentinel-3 LAI (2020, Amazon study region)

52°W

51°W

Satellite observations for fire emissions

Fuels loads

- Leaf area index (e.g. Proba-V, Sentinel-3)
- Land cover (change) (e.g. ESA CCI)
- Biomass (e.g. ESA CCI)
- Forest height (e.g. GEDI)
- Vegetation Optical Depth (e.g. SMOS, VODCA)

Fuel moisture

- Vegetation Optical Depth (e.g. SMOS, VODCA)
- Soil moisture (e.g. SMOS, ASCAT, Sentinel-1)
- Live fuel moisture content (e.g. MODIS, Sentinel-3, Sentinel-1, VOD-based)

Fire dynamics

- Burned area (e.g. ESA CCI, Sentinel-2)
- Fire size, speed, duration (e.g. Fire Atlas)
- Fire radiative power (e.g. MODIS, VIIRS, Sentinel-3)

Atmospheric composition

- Column-integrated CO, NOx (e.g. Sentinel-5p)
- Aerosols (e.g. Sentinel-5p)

Sense4Fire approach

Fire behaviour

- Sentinel-3 SLSTR and Suomi-NPP VIIRS: temporal development of individual fires
- Sentinel-2: mapping burned area using FireCCI BAMT tool
- Quantification of fire persistence, progression, size, and fire radiative power

SCIENCE ADVANCES | RESEARCH ARTICLE

CLIMATOLOGY

Tracking and classifying Amazon fire events in near real time

Niels Andela^{1,2}*, Douglas C. Morton³, Wilfrid Schroeder⁴, Yang Chen⁵, Paulo M. Brando^{5,6,7}, James T. Randerson⁵ Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed

Mapping fire types

Mapping different fire types (for Brazil)

Further fire types will be defined for Africa, temperate steppes and boreal forests

Mapping fire types

Interpretation of pre- and post fire Sentinel-2 pairs for 163 randomely sampled fires across the South American domain in 2019

a) Fire events		Reference data			
		Deforest ation	Forest	Total	User's Accuracy
Classi-	Deforestation	64	34	98	65%
fication	Forest	19	46	65	71%
	Total	83	80	163	
	Producer's	77%	58%		
	accuracy				
	Overall Accuracy = 67%				

Fire types in the Amazon in 2019

Niels Andela^{1,2}*, Douglas C. Morton³, Wilfrid Schroeder⁴, Yang Chen⁵, Paulo M. Brando^{5,6,7}, James T. Randerson⁵

for the Advancement of Science, No claim to original U.S. Government

Works. Distributed

Fire type

Carbon emissions (metric ton ha⁻¹)

*

Sense4Fire approach

S4F Fuel and Fire Emissions Model

sense⁴

Fire

· eesa

Estimating fuel moisture: #1 from Sentinel-1 Sense⁴ @esa

- Extending the Water Cloud Model to simulate Sentinel-1 backscatter from live-fuel moisture content (LFMC), LAI and soil moisture
- Retrieval of LFMC from Sentinel-1

Estimating fuel moisture: #2 from Ku-VOD

Hydrology and

Earth System

Sciences

Discussions

- Estimating LFMC from Kuband Vegetation Optical
- Depth (VOD)
 Calibration against Globe-LFMC database
- Daily, global 2000-2017

https://doi.org/10.5194/hess-2022-121 Preprint. Discussion started: 5 April 2022 © Author(s) 2022. CC BY 4.0 License.

Matthias Forkel¹, Luisa Schmidt¹, Ruxandra-Maria Zotta², Wouter Dorigo², and Marta Yebra^{3,4}

Data at zenodo:

LFMC 2003-08-01

Sense'

· eesa

S4F Fuel and Fire Emissions Model

∕sense⁴

🖉 Fire

· eesa

Retrieval of fuel dynamics for individual fires Fire

*

Validation of statistical distributions of fuel loads and consumption and emission factors from 95 fires in the Amazon study region against databases

Litter and woody debris

(Global database of litter fall masses and litter pool carbon, Holland et al. 2014)

Fuel load and combustion completeness

(Fuel database, van Leeuwen et al. 2014)

Emission factors and combustion efficiency

(Database from Andreae 2019)

Sense4Fire approach

Benchmarking emissions against TROPOMI

Integration of emissions in CAMS IFS and comparison of column CO with S5p TROPOMI (August-September 2020, Amazon 70W-50W/25S-5S

Benchmarking emissions against TROPOMI

Comparison with TROPOMI NO₂

Sense⁴

Summary

- Estimation of fuel loads, fuel moisture, fuel consumption and fire emissions for individual fires
- Emission factors depend on fire type, fuel type, and moisture
- S4F improves over GFAS for CO
- GFAS and S4F reveal large NO₂ biases (over certain fires)

Sense'

Knowledge gaps and research priorities

Fire dynamics and emissions

- Harmonizing datasets + uncertainties (e.g. height + biomass + land cover + VOD)
 Understanding individual fires, rather than gridded pixels or fire counts
 Assessing fire emissions from multiple perspectives (vegetation + emissions modeling + atmospheric constraints + field databases)
 Quantify climate-vegetation-fire interactions to predict feedbacks and trends
- **3-dimensional vegetation structure**
- LAI and fAPAR should separate between trees + grass + shrubs per pixel Leaf + woody biomass + woody debris from optical + (Tomo)SAR + Lidar Future land carbon sink? -> carbon turnover, mortality and disturbance! Focus on litter production/stocks, disturbances, forest mortality, dead wood, forest structure changes, decomposition ...