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Overview

|. Direct application of remote-sensing: regional CO, fluxes in South
Asia using OCO-2 (Philip et al., 2022)

Il. Indirect application of remote-sensing: Estimating seasonality of
global lake and reservoir CH, emissions (Johnson et al., 2022)



Scarcity of in situ CO, and CH, measurement data

» Major limitation for estimating
GHG fluxes has historically been
the scarcity of in situ data.

» Large uncertainty exists in the
“bottom-up” and “top-down”
estimates of GHG surface fluxes in
many regions.

» Observational coverage of satellite
products is an advantage for
estimating GHG fluxes.

CarbonTracker observational network - CT2019
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New insights gained with OCO-2 data: Robust constraint on regional

terrestrial biospheric CO, fluxes
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Investigating the ability of XCO2 data to constrain subcontinental CO, fluxes.

» 0CO-2 captures different NBE signals compared to in situ data during the 2015-
2016 El Nifno event which reduced CO, uptake in the tropics. Near-neutral NBE

flux of 0.04 £ 0.14 PgC yr1.
> Satellite data is vital as South Asia has no operational in situ measurements.
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Philip et al., 2022, JGR
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New insights gained with OCO-2 data: Robust constraint on regional
terrestrial biospheric CO, fluxes
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» Larger seasonality of NEE fluxes estimated by assimilating OCO-2
(seasonal amplitude of 4.1 PgC yr!) and global IS (2.2 PgC yr?)

compared to the prior model (1.4 PgC yr?).

» 0CO-2 data imposed a robust phase shift in the seasonal cycle.



New insights gained with OCO-2 data: Robust constraint on regional
terrestrial biospheric CO, fluxes
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Estimating global lake and reservoir CH, emissions seasonality

Measurement Locations
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» CH, flux measurements are spatiotemporally sparse.

» Flux data for 575 individual lake systems and 881
aggregated flux values (674 diffusion; 207 ebullition).

» Many regions have little to no lake and reservoir flux
information. Thus, eco-climatic lake/reservoir types
are not well represented.

» A major variable for deriving global lake
emissions is defining flux seasonality driven

by lake-ice phenology.

» Number of monitoring sites for lake
freeze/thaw is extremely sparse.

» Remote-sensing greatly increases the
observational coverage for constraining lake
freeze/thaw on a global scale.
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Remote-sensing ice-cover for constraining aquatic CH, emission
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» For the first-time satellite data (Advanced Microwave
Scanning Radiometer for EOS (AMSR-E), AMSR-2, Special

Sensor

Microwave

Imager (SSM/I), SSM/I

Sounder

(SSMIS) satellite 36.5 GHz brightness temperature data)

used for reservoir freeze/thaw dynamics globally.

Du et al., 2017, Cryosphere
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» Prior to Johnson et al. (2021, 2022) using satellite remote-sensing to define lake and reservoir freeze/thaw dynamics,
inland aquatic CH, emission seasonality was estimated using: 1) simple latitude-dependent assumptions, 2) assumptions
based on modeled air temperature, and 3) other non-observation driven methods.



Global lake CH, emission seasonality
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3. Need for improved satellite observations BUT... we can
improve our models too!

GEOS-Chem minus TM5 XCO2 (ppm) LNLG
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Wang et al. (2020) used GEOS-Chem simulations to show that China has larger annual biospheric CO, uptake

compared to prior knowledge; thus offsetting 45% of Chinese fossil fuel emissions, as opposed to 18% or less
reported by previous studies.

Using the OCO-2 v9 MIP product, we show that different transport models (i.e., GEOS-Chem v. TM5) result in very
different NEE estimates in China. Model ensembles can help define transport uncertainty impacts on results.



ALL the speakers are requested to send their
presentation(s) in pdf or ppt, as a back-up solution to
avoid technical problems arising during the sessions.
All the presentations should be sent

to

Talk is 12 minutes long. Questions will be asked in the
last 30-minute session so can use the whole time.
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Thanks!

Questions?
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Understanding the global carbon cycle: A requirement for future
climate predictions

Mauna Loa
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The terrestrial biosphere plays a significant role in the global CO, budget
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Inland water bodies play a significant role in the global CH, budget
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» Majority of CH, emitted by fossil fuel production/consumption and agriculture/waste.
» Wetlands and inland water bodies contribute significantly to the global CH, cycle.
> Lakes and reservoirs are among the most uncertain components of the CH, budget.



Satellite column CO, (XCO,) to estimate CO, surface fluxes

The Orbi.ting Car.bon ObservatorY-Z %J, Xi%‘ v’ Satellites increase the spatiotemporal
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Estimation of “top-down” global CO, surface fluxes

> Spatiotemporal gradients in atmospheric CO, mixing ratios are used to estimate “top-down” CO, fluxes.

» We assimilate OCO-2 XCO, data and global in situ measurements to infer CO, surface flux using the GEOS-
Chem 4D-Var data assimilation system.

NASA GEOS Atmosp_he_ric _Chemical CO, Observations
Earth System Model Data Assimilation System
Meteorology

Global Chemical Transport Model

“Bottom-up” Prior Fluxes

From Carbon Cycle Models Forward Modeling

Terrestrial “Top-down” CO, Surface

Biospheric W TR, e A B, Flux Estimates
Exchange (NEE) e T

Anthropogenic .
Inverse Modeling (4D-Var)




0OCO-2 optimized global terrestrial biospheric CO, fluxes:
NASA Ames Research Center (ARC) global model

Net Biome Exchange (NBE = NEE + unoptimized Biomass Burning Emissions (BBE))

» 0CO-2 and IS observations produced
global land CO, sinks for 2015-2018.

» Annual NBE anomaly signals varied
between years, with positive anomaly
values for 2015-2016 and negative
anomaly values for 2017-2018.

» The higher NBE anomaly values for 2015-
2016 reflects the impact of the 2014-
2016 El Ninho event which led to reduced
CO, uptake in the tropics.
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Insights into regional CO, fluxes using 0CO-2

Transcom regions (http://www.purdue.edu/transcomy/)
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» Top-down emission studies have typically focused on latitudinal or large region constraints.
» Recent goal of OCO-2 is to determine spatial scales that MIP fluxes are robust.

» NASA ARC model and the L4 MIP fluxes have been used in recent regional subcontinental studies.



1. Regional Carbon Cycle: South Asian terrestrial biospheric CO, fluxes
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Larger seasonal cycle of CO, over South Asia
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» The seasonal cycle of OCO-2 XCO, is larger than simulated XCO, using prior fluxes.
» Posterior XCO, estimated when assimilating OCO-2 data better reproduces OCO-2 retrieved XCO,.



Posterior CO, better capturing seasonality of CONTRAIL observations
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» The seasonal pattern of CONTRAIL observations was reproduced by posterior CO,
constrained by both IS and OCO-2 data (R = 0.97-0.99) better than the prior (R = 0.92).



0CO-2 optimized fluxes compare better with remote-sensing NEE-proxies
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» 0CO-2 constrained NBE are better correlated with satellite-based NEE-proxies (NDVI,
EVI and SIF) compared to prior (CASA) and IS-constrained model simulations.



