Assimilation of multiple datasets results in large differences in regional to global-scale NEE and GPP budgets simulated by a terrestrial biosphere model

C. Bacour, N. MacBean, P. Peylin, F. Chevallier

with contributions from S. Léonard, E. Koffi

Laboratoire des Sciences du Climat et de l'Environnement Gif sur Yvette, France

in Biogeosciences - Discussion https://doi.org/10.5194/bg-2022-109 Quantifying and reducing uncertainty in global C budget projections using Terrestrial Biosphere Models

[@]Friendlingstein et al. (2020)

Simulations by Terrestrial Biosphere Models

Model - data fusion to optimize ORCHIDEE parameters

Datasets

Model - data fusion to optimize ORCHIDEE parameters

Datasets

MODIS coll. 5 15 pixels / PFT daily / 0.72° 2000-2010

- Not an up-to-date reanalysis of the C cycle!
- Assessment of the useful informational content provided by different data-streams on global C fluxes wrt the setup and the model structure

ORCHIDAS assimilation framework

https://orchidas.lsce.ipsl.fr

Misfit function

$$J(\mathbf{x}) = \frac{1}{2} \left[\left(H_{LMDz}^{\circ} H_{ORCH}(\mathbf{x}) - \mathbf{y}^{CO2} \right)^{t} \cdot \mathbf{R}_{CO2}^{-1} \cdot \left(H_{LMDz}^{\circ} H_{ORCH}(\mathbf{x}) - \mathbf{y}^{CO2} \right) + \left(H_{ORCH}(\mathbf{x}) - \mathbf{y}^{F} \right)^{t} \cdot \mathbf{R}_{F}^{-1} \cdot \left(H_{ORCH}(\mathbf{x}) - \mathbf{y}^{F} \right) + \left(H_{ORCH}(\mathbf{x}) - \mathbf{y}^{VI} \right)^{t} \cdot \mathbf{R}_{VI}^{-1} \cdot \left(H_{ORCH}(\mathbf{x}) - \mathbf{y}^{VI} \right) + \left(\mathbf{x} - \mathbf{x}^{b} \right)^{t} \cdot \mathbf{B}^{-1} \cdot \left(\mathbf{x} - \mathbf{x}^{b} \right) \right]$$

Data Assimilation Experiments

Experiment name	Flux data	NDVI data	Atmospheric CO ₂ concentrations	Number of optimized parameters	Number of observations
F	x			133	150 792
VI		x		19	149 916
CO2			x	114	6 360
F+VI	x	x		152	300 708
F+CO2	x		X	182	157 152
VI+CO2		x	x	114	156 276
F+VI+CO2 F+VI+CO2-2steps	x	x	x	182	307 068

Optimized	Processes	Parameters	Obs. constraint	
parameters	Photosynthesis	5 parameters / PFT	F,CO2	
	Soil Water Availability	1 parameter / PFT	F,CO2	
	Phenology	5 parameters / PFT	F,VI,CO2	
	Respiration	3 parameters + KsoilC _{site} + KsoilC _{reg} (30 regions)	F,CO2 F CO2	

Scientific Questions

- Analyze the compatibility, complementarity, and usefulness, of the different data streams in the frame of a globalscale C data assimilation system
- Assess their potentials to improve the realism of the space-time distribution of **NEE** and **GPP**

Overall fit to the observations

Reduction of the model-data mismatch wrt the variables assimilated

- Model improvement usually better for the experiments where a data stream is assimilated alone
- For the multiple DA with CO2, the 2-step approach lead to the highest improvement wrt F and VI
- For CO2: slight differences wrt raw data, higher variability between experiments wrt de-detrended data

Overall fit to the observations

Reduction of the model-data mismatch wrt the variables assimilated

Parameter estimates and uncertainties

- Highest departures from the prior values obtained for single-data stream assimilations
- Correcting the bias in atm. CO2 trend prevails over the improvement of photosynthesis and phenology related parameters
 - higher changes obtained for F and VI, compared to CO2
 - little variability among the 3 data-streams DA experiments (but the 2steps one)

Influence matrix

 $\mathbf{S} = \mathbf{R}^{-1}\mathbf{H}^{\infty}\mathbf{A}\mathbf{H}^{\infty t}$

with
$$A =$$

$$\mathbf{A} = \left[\mathbf{H}^{\infty t}\mathbf{R}^{-1}\mathbf{H}^{\infty} + \mathbf{B}^{-1}\right]^{-1}$$

(@*Cardinali et al., 2004*)

Global Observation Influence (OI)

> gauges the average influence that each single observation has on the analysis

Relative Degrees of Freedom for Signal (DFS)

> measures the relative contribution of the data stream o to the fit

$$OI = \frac{tr(\mathbf{S})}{m}$$
$$DFS = 100 \times \frac{tr(\mathbf{S})}{tr(\mathbf{S}_{\mathbf{0}})}$$

		C	DI	DFS		
		1-step	2-step	1-step	2-step	
~ x 5	F	0.000586	0.000577	74.65	76.9	
	VI	0.000048	0.000048	11.12	11.68	
	CO2	0.002654	0.002035	14.23	11.42	

 OI for CO2 is about 5 times higher than that for F with about the same number of optimized parameters BUT about 25 times less observations > impact of the trend correction Reduction of the model-data mismatch for all variables

- Simulations using optimized parameters constrained by other data-streams > model degradation can be observed
- The joint assimilation experiments lead to improved model-data agreement and reduce the risk of model degradation (model overfitting wrt a given data-stream)

Impact of the assimilations on regional to global land C fluxes

GCP: NEE = -2.9 GtC.yr⁻¹ \pm 0.8

- F+CO2, VI+CO2, and F+VI+CO2 : similar NEE and GPP budgets across regions
- CO2 and F+VI+CO2-2step experiments result in distinctly different estimates between N. Hemisphere and Tropics

Impact of the assimilations on regional to global land C fluxes

GCP: NEE = $-2.9 \text{ GtC.yr}^{-1} \pm 0.8$

C budget partitioning between N. Hemisphere and Tropics

- **CO2** > similar regional partitioning as the atmospheric inversions
- F+VI+CO2-2step > typical partitioning pattern of TBMs' behavior
- F+CO2, VI+CO2, and F+VI+CO2 > approximately equal C sink in the NH and tropics (=> unlike the general pattern for TBMs)

- Configuration matters
- Atmospheric CO₂ data are crucial for an accurate prediction of the distribution of the terrestrial land sink
 - challenges in handling model-data bias in Bayesian optimisation frameworks
 - sub-optimal optimization of the soil C disequilibrium with our approach based on a model spin-up without a long transient run (not TRENDY like)
 - 2step approach: illustrate how the informational content of the data-streams relative to C fluxes is enhanced once soil C disequilibrium is modeled in a more "realistic" way
- Diagnostics for system evaluation
 - relative informational content brought by each data stream
 - consistency of the error statistics on parameters and observations (Desrozier et al. (2005))
 - optimisation efficiency
- Assimilating simultaneously multiple datasets is preferable to optimize the values of the model parameters and avoid model overfitting