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We’ve been steering by looking in the rearview.
Advances (spurred by COVID) offer decision makers timely feedback to support
more agile and adaptive management of carbon emissions and natural sinks.
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Comparing inversions with UNFCC inventories
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Comparing national greenhouse gas budgets reported in UNFCCC
inventories against atmospheric inversions
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In this study, a new methodology to
use inversions and make them
comparable with UNFCCC reports was
presented for the three gases

Annex One

Non Annex One
l 27

1
No Data

Figure 2. Numbers of years covered by national inventories reports (NC+BUR) in each non-Annex I country; Emissions

from Greenland are reported by Denmark.

Significant differences were found, especially for lower
UNFCCC emissions of CH, in the fossil sector

This work had an impact at the COP26 through an article
in the Washington Post



Current status

Annual analysis of the global CO, budget by the Global Carbon Project
* Annual estimates for year n-1
e Based on ocean and land models, and annual fossil emissions ( per country )

Global CH, budget by GCP
* Decadal estimates
* Combination of multiple inversions and bottom-up inventories
* Last update to 2017, current update planned to extend to 2020

Global N,O budget by GCP

* Decadal estimates
* First publication in 2020
* Last update to 2018, current update planned to extend to 2019

UNFCCC submissions

e Latency of 1+ years for Annex 1 countries
e Latency of 10+ years for non Annex 1 countries



Towards near real time GHG budgets ?

* New estimates of fossil emissions area => available in NRT
* CH, Kayrros Global Methane Watch
* CO, Carbon Monitor daily national budgets & emissions maps at 10 km

* New global inversions of CO, and CH, fluxes => each 4 month
e Use NRT in-situ concentration data from NOAA, ICOS, RAMCES networks
* Satellite XCO, and XCH4 from OCO2 and GOSAT
* Copernicus CAMS results are already available for CO,

 Attribution of top-down flux anomalies using bottom up information
* Land observations and models
e Ocean observations and models



Global carbon emissions (GtCO, eq yr™)

Near real time Carbon Monitor fossil CO, emissions
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Sentinel-5P near-real time monitoring of CH,
emissions for ultra-emitters

RESEARCH

GREENHOUSE GASES

Global assessment of oil and gas
methane ultra-emitters

T. Lauvaux™, C. Giron?, M. MazzoliniZ, A. d'Aspremont®?, R. Duren*®, D. Cusworth®,
D. Shindell”®, P. Ciais™'

Methane emissions from oil and gas (0&G) production and transmission represent a considerable
contribution to climate change. These emissions comprise sporadic releases of large amounts of
methane during maintenance operations or equipment failures not accounted for in current inventory
estimates. We collected and analyzed hundreds of very large releases from atmospheric methane
images sampled by the TROPOspheric Monitoring Instrument (TROPOMI) between 2019 and 2020.
Ultra-emitters are primarily detected over the largest O&G basins throughout the world. With a total
contribution equivalent to 8 to 12% (~8 million metric tons of methane per year) of the global

0&G production methane emissions, mitigation of ultra-emitters is largely achievable at low costs
and would lead to robust net benefits in billions of US dollars for the six major 0&G-producing

Major gas . . . .
pipelines countries when considering societal costs of methane.

Emission rate:

10 tons/h
500 tons/h

Global coverage

Ultra emitters > 20 tCH, per hour with TROPOMI
Represents 5 to 80% of national emissions from inventories LSCE
Lower detection of leaks > 5 tCH, per hour using PRSMA, Sentinel-2, Gaofeng ...




Near real time estimates of fossil CH, regional emissions for
major extraction basins ( represents = 35% of emissions )
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Figure 2. Emissions of CH, (blue) from the Permian shale oil and gas basin in the US and well
completion rates (red).

Coverage : seven major oil, gas, coal basins
representing 25% of global fossil CH4 emissions
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From near real time emissions to full GHG budgets over land and ocean
=> National assessments of emissions and sinks at 4 months intervals

.. .202 2022 | 2023 |
i L
(Ca r: O%S;:ncii?r; Existing, updated monthl -
L]
Fossil CH, — -
(TROPOMI) Existing, updated weekly -
L]
L]

At(rggg;_)zhiic;s? oczi Existing, updated annually Updated every 4 months

Atmospheric CH,

(inversion) Existing, updated every 4 years Updated annually

Biomass change
(GEDI, ICESAT, VOD)

Existing, updated every 4 months

Terrestrial carbon fluxes

Proto Updated every 4 months
(upscaled by machine learning, DGVMs) Yoo 2 =

Ocean carbon fluxes /-0 Updated every 4 months
(upscaled by machine learning) Sl g 4

Fire emissions
(GFED)

Existing, updated every x months

Deforestation emissions | Prololype Updated every 4 months
| |
B Global
NRT budgets, updated every 4-6 months Stocktake

Figure 1. Component of a ‘near-real-time’ analysis system that could deliver observation-based
estimates of global and national GHG budgets for the Global Stocktake in 2023. The timeline
separates existing components, and prototypes being tested by research groups involved in this

|

reccap-2

paper to deliver regular updates of key fluxes with a latency of four months.



Near Real time attribution of national budgets into components

n rate
peric €02 97 Net land CO fluxes
AtmOSP Intact (managed and unmanaged)
forests
Deforestation
Fossil fuel Regrowth
emissions

Ocean

=

River (
discharge

Biomass C change
= (satellite data separated
into processes)

Atmospheric
inversions

= Soil C change
(mass balance)

Figure 3. Closure and attribution of national CO, budgets achieved by combining top-down inversion
estimates of net land CO, fluxes, biomass carbon stock changes from satellites, lateral fluxes from
rivers, crop and wood trade, fires and deforestation emissions. The proposed approach infers
non-measurable soil carbon stock changes from mass balance between total CO, fluxes from
top-down inversions and measurable carbon stock changes in biomass.

Confidential — please do not cite

Inversions
= Total CO, fluxes

Then correction of lateral fluxes
= Net land carbon stocks change

Global NRT biomass C change
from VOD and optical sensors

Then observable C losses in NRT
- Fire emissions
- Deforestation CO, emissions

—> Residuals.
* Forest growth / regrowth sink
* Soil C storage change



Global NRT monitoring of biomass C changes with satellites

N Total live biomass changes [MgC ha' yr']
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@ Last year, the European Space Agency (ESA) made changes to the way it processes
SMOS data. This data is the key input to the Biomass Carbon Monitor, and w
adjusting our algorithms to the new ESA methodology. This effort is well advanced, and in

W ith the missing values from the third quarter of
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2021 onward

Global coverage
20 km resolution

Updated each 4
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National data freely
available

www.kayrros.com/biomass-watch/
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Global NRT monitoring of fire C emissions with satellites

Abnormal 2021 fires over northern high-latitudes
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Surface Temperature Anomaly (°C) during June
18-25 of 2021 compared to average
temperatures of the same time period 2003-2013

Active fires — burned area = bottom up emissions
Carbon monoxide (MOPITT, TROPOMI, 1ASI) = top down emissions Confidential — please do not cite




Global NRT monitoring of fire C emissions with (CO) satellites

Inversion estimates of boreal and tropical fire carbon emissions
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Global NRT modeling and attribution of C flux anomalies

Example : the drought of 2022 in Europe, China ...

2022 in perspective: NBP ( net C flux anomaly)
with the same global vegetation models used for the annual buget and future projections
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Near real time air-sea CO, fluxes

Based on MI, surface in situ pCO2 and satellte observations of the ocean surface SST, CHI, SSS, MLD

ESTIMATING PCO, AND FLUXES FROM SATELLITES
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MACHINE LEARNING
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BULK FLUX
FORMULATION

)

\ Air-Sea CO, Flux ]

INPUT DATA GAP FILLING
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Near real time global CH4 and CO2 budgets are
now possible

Coverage and separation of managed /
unmanaged land

Understand extreme events and evaluate
emerging carbon feedbacks

Impacts of extreme weather events and
economic shocks on fossil CO2 and CH4 emissions



Near real time Fire CO, emissions

Two approaches : new GFED5 satellite based (VIIRS) daily emissions and global NRT CO inversion from MOPITT

Atmospheric Bayesian inversion estimate of global CO budget

Global Fire Emissions Database
Priori fluxes

Emission source Dataset
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