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Rationale

Large-scale forest monitoring is essential for quantifying greenhouse gas (GHG) exchanges over 

vast areas. 

It is possible to predict ecological processes and quantify GHG exchanges, by means of process-

based models.

However, accurate and unbiased information on ecosystems current state are essential to achieve 

robust estimates.

Nowadays huge amount of data is becoming available (e.g., high resolution EO) and there is a need to 

integrate those information in the modelling frameworks.

Data assimilation (DA) allows to combine model predictions and data from multiple sources, 

considering the associated uncertainties.
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Objectives

Develop two frameworks that allow to assimilate repeated measurements of high resolution (10-30 m) 

remotely sensed data into a simple process-based forest model.

1. Site fertility class (ST)

2. Forest structural variables (FSV)
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Satellite data and field measurements

Areas: three tiles of 100 Km2 across Finland

Satellite data collection: sentinel 2 (s2) 2016 and 

2019

Resolution: 10x10 m

Field measurements: Finnish Forest Centre 

campaigns from 2016 and 2019.

Forest state: basal area (B), stand average height 

(H), diameter at breast height (D), species 

composition

Managed forests were excluded using a GIS 

database
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Models

PREBAS: simple process-based model

PREBAS emulators: regression models that predict PREBAS outputs.

PREBAS emulators were built and calibrated for each tile using PREBAS outputs from 20000 sampled 

pixels.

1. FSV and ST estimates based on s2 2016 were used to initialize PREBAS

2. PREBAS output for 2019 was used to calibrate the emulators
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Bayesian method for data assimilation

Bayesian method was used for data assimilation in the following steps:

1. The model was initialized with EO based estimates of 2016. Monte Carlo simulations were used to 

account for the initial state uncertainty.

2. Model forecasts for 2019 (prior) were combined with new EO based estimates for 2019 

(likelihood).

3. New maps were produced for 2019 on the basis of DA results (posterior).
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Exanple of DA at pixel level.

Example of data assimilation at pixel level. The blue, green and yellow distributions represent, respectively, the

uncertainty of Sentinel 2 satellite based estimates for 2016 (s2016), model predictions for 2019 (m2019) and 

Sentinel 2 estimates for 2019 (s2019). The distribution of the data assimilation results are reported in red

(DA2019). The first row of the figure panels is an example of data assimilation for a pixel where m2019 and 

s2019 diverged; the second row shows results from a pixel where m2019 and s2019 estimates were consistent
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Data assimilation for forest structural variables

1. Emulator calibration;

2. Monte Carlo simulations for the uncertainty

quantification of initial state;

3. Emulator runs;

4. Data assimilation;

5. Map production.

1. modEm construction and 

calibration

2. Error model construction 

and uncertainty 

quantification of the initial 

state

5. Forest growth and 

C balance mapping

4. Data assimilation:

𝑃 ȁ𝜃 𝐷 ∝ 𝑃 𝜃 𝑃 𝐷ȁ𝜃

D = data at t2; 

𝜃 = initial state uncertainty

3. modEm 

runs at 

pixel level

MC
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Data assimilation for site fertility

1. Emulator calibration;

2. MC simulations for the uncertainty 

quantification of initial state;

3. 5 sets of emulator runs;

4. Bayesian model comparison;

5. Data assimilation;

6. Map production.

1. modEm construction and 

calibration

2. Error model construction and 

uncertainty quantification of the 

initial state

6. Site fertility class 

mapping

4. Bayesian model comparison:

𝑃 ȁ𝑀 𝐷 ∝ 𝑃 𝑀 𝑃 𝐷ȁ𝑀

D = data at t2 (V, B, H, D); 

M = model run sets

3. Five sets of 

modEm runs at 

pixel level. Sets 

differed for the 

fertility class

5. Data assimilation combining the BMC 

results and the probit model estimates 

based on the 2016 and 2019 data 

acquisition.

MC
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Results

Distribution of the highest probability estimates

for each pixel of stand average height (H), stand

average diameter at breast height (D) and stand

basal area (B) over the three tiles. The 

distributions were drawn from satellite based

estimates (s2016, s2019), model based

estimates (m2019) and data assimilation

(DA2019).
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Results

Distribution of deciduous species, pine and 

spruce percentage cover over the three tiles

using the highest probability estimates for each

pixel. The distributions were drawn from satellite

based estimates (s2016, s2019), model based

estimates (m2019) and data assimilation

(DA2019).
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Results

Variance distributions of the stand average

height (H), diameter at breast height (D) and 

basal area (B) over the three tiles. The 

distributions were drawn from satellite based

estimates (s2016, s2019), model based

estimates (m2019) and data assimilation

(DA2019).
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Results

Distribution of site fertility class for the different

tiles. Satellite based estimates for 2016 and 

2019 (s2016 and s2019), model based

estimates (m2019) and data assimilation results

(DA2019) are reported.
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Results validation

Mean squared errors (MSE) for the forest

structural variable estimates based on model

forecasts (m2019), Sentinel 2 data of 2019 

(s2019) and data assimilation of m2019 and 

s2019 (DA2019). Mean squared error was

decomposed in three components: bias (sb), 

data variability (sdsd) and lack of correlation

(lc).
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Results validation

Forest structural variables maps drawn using

the maximum a posteriori probability of DA2019. 

The distributions report the deviation between

m2019 (red) and s2019 (blue) from DA2019 

estimates at pixel level.
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Conclusions

• DA of forest structural variables reduced the uncertainty of the estimates and improved the accuracy of the

forest structural variable estimates reducing the impact of biased data.

• DA is particularly suitable for Forest monitoring and forest modelling by continuously updating the current 

state of a forest every time new data become available 

• Model emulators allowed to reduce the computational load of DA, making possible the processing of an 

enourmous ammount of data.
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Knowledge gaps & priorities

DA can be extended to any kind of model and any kind of data (UAV, eddy covariance, lidar).

The use of field measurements, such as inventory campaign (NFI), is always desirable. The advantage 

is that we can identify the weakest components of the framework, i.e model predictions, satellite based 

estimates …

Develop in the framework routines that allow to identify and quantify disturbances over large areas 

(change detection algorithms). Integrate information about the physiological status of the forests, such

as drought stress

Extend the applicability of our DA framework to new environments (i.e., Mediterranean, temperate, 

alpine, tropical forests).

A more extensive application of the framework using data of different uncertainties and longer period 

simulations is desirable to explore the full potential of the method.
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Thanks for the attention!


