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What is a Digital Twin?

A digital representation of a physical system...
L  With some predictive capability (i.e. a model)...
 That is data-driven (e.g. Earth Observation, in-situ, citizen data, etc)...
d Capable of providing decision support to stakeholders
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Benefits of emulating the JULES land surface model

Emulator can accurately reproduce JULES simulations but also:
e is extremely fast (years per millisecond)
 canrun huge ensembles, sample uncertainties, etc
e is extremely simple/lightweight (deployed in cloud/notebook/etc)
 makes JULES far more accessible to non-expert users
e can be embedded into climate services
* allows explainability of model (Explainable Al methods)
 can be driven by other data (e.g. EO data)
* constrained by the “physics” within JULES
 but means we can potentially out-perform JULES by combining JULES and EO data
 canrun at whatever resolution we have available input data for
Two NCEO projects related to this work:
e ESA Digital Twin Earth - Drought - Soil moisture over Africa
 ESA IMITATE - Carbon Cycle - GPP over Europe
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ESA Digital Twin Earth Precursor (Afrlcan Drought)

J We’ve used machine learning to
emulate the complex,
computationally expensive model in
a very fast and light-weight way

J Produce drought metrics - currently
wet season length, start date of wet
season and number of dry days

J Widgets for these are deployed
within our Interactive Data Portal

d Emulator is extremely fast and runs
in the web-browser, allowing users
to ask their own questions based
around soil-moisture response to
climate
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Evaluation of Emulator
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ESA IMITATE (Carbon Cycle) = = -—— -

The carbon cycle over Europe is still
highly uncertain and neither
observations nor models alone are
capable of addressing these issues.
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We are developing machine-learning model emulators

to replicate simulations from complex land surface o /
modeL Emulator vs JULES GPP over Europe on 2020-07-15

Emulator JULES

Emulators allow greater understanding of the model
behaviour and let us explore the different relationships
between the drivers and carbon fluxes.

We can then use emulator with Earth Observation data
to derive new datasets that are explicitly tied to
observations and can make use of their uncertainties.
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JULES Data EO Data

All GPP-related inputs Observable inputs EO inputs

Gridbox Per-PFT Per-PFT Per-PFT
emulator emulator emulator emulator

Minimum Temperature * Minimum Temperature * Minimum LST
Features Maximum Temperature * Maximum Temperature * Maximum LST
used in Soil moisture (all layers) * Soil moisture (top layer) * Soil moisture (surface)
emulator — Soil Moisture Availability * Diffuse VIS albedo * White-sky VIS albedo
training Factor » Diffuse NIR albedo * White-sky NIR albedo
* FAPAR
* SW Downwelling
— Radiation
1) Can we emulate 2) Can we emulate JULES 3) Can we use the EO data directly
JULES GPP using all GPP using only JULES to produce an EO-based GPP data
available (relevant) variables that have an EO product constrained by JULES
JULES variables? equivalent? process representation?

Natural
Environment
Research Council

National Centre for
Earth Observation




Statistics for Emulator Performance for Validation Period (2020) - Emulator per-PFT 00
95th Percentile Mean Absolute Error (MAE)

1) Can we emulate JULES GPP
using all available (relevant)
JULES variables?

Features
* Minimum Temperature
* Maximum Temperature

* Soil moisture (all layers)
* Soil Moisture Availability Factor
* FAPAR

* SW Downwelling Radiation

Root Mean Square Error (RMSE)
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Gross Primary Productivity (GPP) Time Series at Lat: 44.375°, Lon: 12.188°
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Explainability and Interpretability
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work in progress
2) Can we emulate JULES GPP
using only JULES variables
that have an EO equivalent?
Features

* Minimum Temperature
* Maximum Temperature

 Soil moisture (top layer)
e Diffuse VIS albedo
* Diffuse NIR albedo
 Soil Moisture Availability Factor

Statistics for Emulator Performance for Validation Period (2020) - Emulator per-PFT obs 05

95th Percentile Mean Absolute Error (MAE) Root Mean Square Error (RMSE)
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work in progress Example of EO data vs JULES for a single day (July 2014)

EO Albedo VIS JULES Albedo VIS EO LST min JULES tstar min

3) Can we use the EO data directly to
produce an EO-based GPP data
product constrained by JULES
process representation?

* Minimum LST
* Maximum LST
* Soil moisture (surface)

* White-sky VIS albedo
* White-sky NIR albedo
* Soil Moisture Availability Factor
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Work in prog reSS . Gross Primary Productivity (GPP) Time Series at (lat: 52.175°, lon: 5.725°), near FLUXNET site NL-Loo (lat: 52.167 °, lon: 5.744")
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Summary and Conclusions

d We’ve successfully developed machine-learning based emulators for several different
JULES applications (drought and GPP)

These emulators are (very!) fast, easy to use, etc and open up a range of applications and
potentially interesting science

If we can successfully use EO data to drive emulator, we nicely bring together physics-
based process models with power of satellite observations (and their uncertainties!)
Explainability/Interpretability have the potential to help us really explain/understand
model behaviour

Lessons learned: If there are land surface model simulations where we can easily map the
inputs to the output, we can probably build an emulator for it!

Much more work to do in this area: deploying applications, Explainable Al, model-data
fusion by driving with EO data, uncertainty propagation, extending beyond JULES to other
land surface models, etc.

(1 Please do get in touch if this is interesting to you ©
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Extra Slides
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Statistics for Emulator Performance for Validation Period
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Explainability and Feature Importance
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Example of Meteorological Input Data
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Top 25 Feature Importances

Smoothed Precipitation Rate I
Saturated Hydraulic Conductivity I
Smoothed Specific Humidity H
Dry Thermal Conductivity I
Specific Humidity 5-day Lag I
Organic Carbon Content I
Specific Humidity 4-day Lag I
Specific Humidity 3-day Lag I
Soil Carbon Content I
Broadleaf Tree Fraction IS
Specific Humidity 2-day Lag I
Bulk Density ES
pH Value of the Soil I
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Temperature at 1.5m Height Bl
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Dry Heat Capacity H
Precipitation Rate H
Precipitation Rate 2-day Lag B
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Explainability and Interpretability
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O SHAP values can be thought of as the influence ~ *7" ™™
a particular input feature has on the output =" -0 L
 It’s referenced to the mean value of the 0.045 = alb_tile 2.0
output 0297 = alb_tile_4_0
 Fig 1 shows the effect of the particular values 220497 - tstarmino 035 '
of each input feature for a particular data 32293 = smcl_0 | s001
point and how they moved the result from the 3 PR 6 7 ; 5 10
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 Fig 2 shows for an entire timeseries how each
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next steps

3) Can we use the EO data directly to produce an EO-based GPP data product
constrained by JULES process representation?

Soil Moisture

Land Surface Temperature

Land Cover

ESA CCI soil moisture v6.1

MODIS MCD43C3 CMG

ESA CCI Global Land Cover

RIOSHE: COMBINED ESA CCILST 3-hourly Albedo Maps v2.0.7
/neodc/esacci/soil /neodc/esacci/land_ N/A .
JASMIN moisture/data/dai surface temperature https://ladsweb.mod /neodc/esacci/land
oL /data/MULTISENSOR I P5://1adSWED.Modaps.€ 1 1 er/data/land c
path ly files/COMBINED/ RMGP /1.3S/0.05/v1.00 osdis.nasa.gov/archive/all Tover maps/v2.0.7
v06.1 ; ' Data/61/MCD43C3/ ~nap e
/daily
Units [m3 m3] [K] [-] [-]
Time range 1978-11-01 to 2020-12-31 2009-2020 2000-2022 1992 - 2015
Spatial
. 0.25 degrees 0.05 degrees 0.05 degrees 300 metres
resolution
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NERC Digital Twin Case Study

d Inthe ESA DTEP project we developed a ML-based emulator for JULES soil moisture over Africa
d This project builds on that and further develops interactive tools for stakeholder engagement
(d NCEO (Leicester, Reading, CEDA) with Met Office and STFC-RAL as project partners

= @=5==2 NCEO - Digital Twin Earth Visualisation Tool

Historical Dry Day

Metric Data Selector Soil Moisture - Historical Time Series
This app allows the user to Threshold (kg m-2] -
visualise the soll molsture content 19 . Soll Molsture — Dry Day Threshold
and number of dry days per year N o
for a selected location and historic Time Range: 2000 .. 2020 2 i |
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number of dry days using the
box provided.
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provided. Number of dry days per year - Historical Time Series

Select the desired time range
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Leaflet | Tiles courtesy of the U.S. Geological Survey
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