## A Carbon Data Model framework to generate probabilistic estimates of ecosystem traits and processes

#### Mathew Williams, Luke Smallman + Global Change Ecology Lab

University of Edinburgh and NCEO, Edinburgh, UK



Digital Twins for the Terrestrial Carbon Cycle ESA Carbon from Space Workshop



## What is a digital twin and why is it useful?

A computer program

that takes as inputs

->real-world data about a physical system

and produces as outputs

->predictions or simulations of how that physical system will be affected by those inputs

DT can inform global C models, identify sources of forecast error, quantify the information content of EO data, & directly link land use data to C assessments





# Global calibration via EO data links



D1 Meteorology (various)

D2 Deforestation, tree harvesting (GFW) Fire (MODIS), Herbivory (FAO/Hempson et al)



# Complexity ≠ forecasting skill







Famiglietti et al 2021

50% of EC NEE data retained for forecast validation

# DT: importance of model structure, parameter constraint, forcing effects on forecasts

| Model | Photosynthesis | Water cycle | Plant respiration                     | Wood<br>litter | No. of parameters |
|-------|----------------|-------------|---------------------------------------|----------------|-------------------|
| M1    | ACM1           | No          | R <sub>a</sub> : GPP                  | No             | 23                |
| M2    | ACM2           | No          | R <sub>a</sub> : GPP                  | No             | 23                |
| M3    | ACM2           | Yes         | R <sub>a</sub> : GPP                  | No             | 23                |
| M4    | ACM2           | Yes         | $R_{\rm m}$ : GPP + $R_{\rm g}$ : NPP | No             | 27                |
| M5    | ACM2           | Yes         | $R_{\rm m}$ : GPP + $R_{\rm g}$ : NPP | Yes            | 29                |



Smallman et al. 2021

#### **CARDAMOM** Assimilation Scheme



**Output**: Probabilistic estimates of parameters, C pools and fluxes for each pixel



Forecast: C pools & fluxes to 2100 under varied scenarios

#### Parameter uncertainty dominates forecast spread



# Correlation maps between the simulated change in biomass stocks (2001–2100) and ecosystem variables



(1)  $MRT_{wood}$  and (2)  $NPP_{wood}$  are the parameters most tightly coupled to the response of biomass C stocks to climate change





#### Contemporary wood residence time: CARDAMOM vs two Forecast Models



years

#### DT to evaluate information content of EO



#### Estimated biomass is strongly impacted





### **Biomass uncertainty reduced**



CI:Median = <u>CI</u> Median

#### Process constraint: Residence time and NPP uncertainty reduced







# Summary – Digital Twins can

- Identify sources of forecast error, *e.g. from drivers, parameters, structures to focus next steps*
- Inform global C models, *e.g. evaluate process representation, like mean residence times*
- Quantify the information content of EO data, e.g. determine the value of repeat observations for process constraint
- Support net zero counter-factuals via probabilistic model experiments; e.g. alternate land use, management (ref: land use talk from Wednesday)



#### Acknowledgements:

Luke Smallman, Jeff Exbrayat, Anthony Bloom, David Milodowski, Pedro Rodriguez Viega, Caroline Famiglietta, Alex Konings CARDAMOM Club, INPE, GEDI, ALOS JULES and INLAND team

Funding: NERC, NCEO, Newton Fund, UKSA

#### Global retrievals of carbon residence times





Residence time ~ Pool lifespan

# Model Trade-offs





# Accurate and general models suffice



