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Why we care:

1. Extreme events can become much more
common with shift in mean climate



drought Why We Ca rE:

fire

low precip

heavy precip

2. Extreme events have an large impact
on variability in the carbon cycle.
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Case Study — Current capabilities



Case Study:

Extreme 2019/20 growing season in southeast Australia
* Extreme year:
e 2019 Hottest and driest year on record

* Extensive wildfires in southeast Australia during Nov 2019 —Jan 2020.
* Sudden shift to cool wet conditions in Feb 2020

* What can we say about the CO, flux perturbations?
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Questions of interest

How much CO, was released to the atmosphere
due to drought and biomass burning, respectively?

Do we see recovery under cool-wet conditions

How did this event impact forest and non-forest
ecosystems differently?

And what are the differences in carbon cycle
perturbations between burned and unburned
ecosystems?
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Space-based carbon cycle observations

* OCO-2 tracks the atmospheric CO, anomalies.
* TROPOMI tracks the CO anomalies

* MODIS tracks the burned area/fire radiative power & vegetation anomalies

Before event During event After event




Relating observations to carbon budget

0CO-2 X0, TROPOMI X4

\ /

ANBE = ATER — AGPP.+ BB
ANEE ~_

MODIS-based FluxSat GPP



Biomass burning estimates
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GPP/NEE anomalies durin

FluxSat AGPP [
GPP determines

spatiotemporal structure

e Calculate AGPP from FluxSat remote-sensing-based estimate

e Assume ANEE o« AGPP [Lietal., 2017]

* Scale ANEE to be consistent with OCO-2 X.,, anomalies
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Liet al. (2017). Responses of LAl to rainfall explain contrasting sensitivities to carbon uptake between forest and non-forest ecosystems in Australia. Scientific Reports, 7(1), 1-9. https.//doi.org/10.1038/541598-017-11063-w
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AXco, determines
the magnitude

AXco, due to
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Daily biomass burning and NEE anomalies during 2019/20

e Carbon loss primarily due to biomass burning (83% fires, 17% ANEE).

e Carbon losses were concentrated in burned forests, including from ANEE.
(¥82% loss was in burned forests, ~16% non-forest, ~2% unburned forest).
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Carbon loss for 2019/20 is large relative to previous years

* 2019/2020 stands out for the large carbon loss, and exceeds the annual net fossil fuel
emissions!

* Large impact of this event demonstrate importance of tracking these events for
monitoring the carbon budget.
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Similar story for aboveground biomass

Qin et al., 2022, Remote Sensing of Environment,
https://doi.org/10.1016/j.rse.2022.113087
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X * Large biomass loss in 2019 but large gains in 2020
.~ (~15% variation in AGB).

| * Fire-adapted Eucalyptus forests and above-average annual
precipitation drove the recovery of vegetation cover
» Note the forests don’t look the same, though.




Looking to the Future



Anomaly detection with 200 km wide-
swath LEO sampling

 Test how well a 200 km wide-swath LEO CO2 mission can detect an extreme event:
» Release CO2 pulse over Colorado for three days (~1 TgC/day)

 Atmospheric CO2 signal is more evident with this sampling relative to OCO-2.
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Increase sampling improves
quantification & localization of
extreme NEE anomalies

| ORNWA
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A 200 km wide-swath LEO mission is able to isolate the NEE
anomaly to Colorado, while OCO-2 is not.

Days
LEO

e Similarly, the wide-swath LEO mission better captures the
magnitude of the event.
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Recommendations / Thoughts
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Dense satellite data are allowing us to track carbon cycle responses to
extreme events with unprecedented detail.
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Recommendation: Launch CO, missions with dense sampling, this will
improve our ability to track carbon cycle responses to extreme events 0 10 20 30 40 50
from space. << Time since disturbance (Years)
* Complementary datasets (e.g., CO & VIs/SIF) are also important for Wang et al (2021) Nat. Clim. Change

] Aboveground biomass for 45 years after fire

understanding component fluxes.

* These events have a large impact on national carbon budgets.

boveground Biomass (Mg ha ")

Challenge: Extreme events are unique, what generalizations can we
take away from the 2019/20 SE Australia carbon cycle anomaly? And
what are implications of DGVMs ability/inability to capture this event?

Mountain Ash Pine |
https://en.wikipedia.org/wiki/Eucalyptus_regnans#
/media/File:Sherbrooke forest_Victoria_220rs.jpg



